Acoustics Animations
Dr. Dan Russell
Kettering University Applied Physics

Reflection of Waves from Boundaries

These animations were inspired in part by the figures in chapter 6 of Introduction to Wave Phenomena by A. Hirose and K. Lonngren, (J. Wiley & Sons, 1985, reprinted by Kreiger Publishing Co., 1991)

When an object, like a ball, is thrown against a rigid wall it bounces back. This "reflection" of the object can be analyzed in terms of momentum and energy conservation. If the collision between ball and wall is perfectly elastic, then all the incident energy and momentum is reflected, and the ball bounces back with the same speed. If the collision is inelastic, then the wall (or ball) absorbs some of the incident energy and momentum and the ball does not bounce back with the same speed.

Waves also carry energy and momentum, and whenever a wave encounters an obstacle, they are reflected by the obstacle. This reflection of waves is responsible for echoes, radar detectors, and for allowing standing waves which are so important to sound production in musical instruments.



Wave pulse travelling on a string

The animation at left shows a wave pulse travelling on a string.







Reflection going from Less Dense to More Dense when they are Very Different densities

The animation at left shows a wave pulse on a string moving from left to right towards the end which is rigidly clamped. As the wave pulse approaches the fixed end, the internal restoring forces which allow the wave to propagate exert an upward force on the end of the string. But, since the end is clamped, it cannot move. According to Newton's third law, the wall must be exerting an equal downward force on the end of the string. This new force creates a wave pulse that propagates from right to left, with the same speed and amplitude as the incident wave, but with opposite polarity (upside down).
=> at a fixed (hard) boundary, the displacement remains zero and the reflected wave changes its polarity (undergoes a 180o phase change)


Reflection going from More Dense to Less Dense when they are Very Different densities

The animation at left shows a wave pulse on a string moving from left to right towards the end which is free to move vertically (imagine the string tied to a massless ring which slides frictionlessly up and down a vertical pole). The net vertical force at the free end must be zero. This boundary condition is mathematically equivalent to requiring that the slope of the string displacement be zero at the free end (look closely at the movie to verify that this is true). The reflected wave pulse propagates from right to left, with the same speed and amplitude as the incident wave, and with the same polarity (rightside up).
=> at a free (soft) boundary, the restoring force is zero and the reflected wave has the same polarity (no phase change) as the incident wave


Reflection & Transmission going from lower density to higher density (similar densities)

In this animation the incident wave is travelling from a low density (high wave speed) region towards a high density (low wave speed) region.

=> How do the amplitudes of the reflected and transmitted waves compare to the amplitude of the incident wave?
=> How do the polarities of the reflected and transmitted waves compare to the polarity of the incident wave?
=> How do the widths of the reflected and transmitted waves compare to the width of the incident wave?



Reflection & Transmission going from higher density to lower density (similar densities)

In this animation the incident wave is travelling from a high density (low wave speed) region towards a low density (high wave speed) region.

=> How do the amplitudes of the reflected and transmitted waves compare to the amplitude of the incident wave?
=> How do the polarities of the reflected and transmitted waves compare to the polarity of the incident wave?
=> How do the widths of the reflected and transmitted waves compare to the width of the incident wave?