Enzymes & the Need for Energy

1: Enzymes

- Catalysts: substances that speed up chemical reactions without being affected by the reactions themselves.
- Enzyme: a protein that increases the rate of reactions by lowering the activation energy.
- Activation Energy: the amount of energy needed to start a chemical reaction
- Substrate: molecule on which an enzyme acts
 - An enzyme binds to a substrate and stresses the bonds of that molecule in a way that makes a reaction more likely to occur.
- The key to an enzyme's activity is its shape.
 - Active Site: location on an enzyme where the substrate binds
 - Each substrate can only bind to one enzyme.
- Temperature, pH, substrate concentration, and enzyme concentration affect reaction rates
 - Each enzyme functions within a certain optimal temperature and pH range.
 - The rate of an enzyme-catalyzed reaction is also affected by the concentration of the enzyme and the substrate.

2: The Need for Energy

- Photosynthesis: the process that converts the radiant energy of sunlight into chemical energy
- Respiration: the process that releases chemical energy for use by the cell
- Scientists divide organisms into two groups according to the way in which they get their food.
 - Autotrophs: plants and other organisms that meet their energy needs by building organic molecules from inorganic substances
 - Heterotrophs: organisms that do not make their own food, but depend directly or indirectly on autotrophs for food

Adenosine Triphosphate (ATP)

- Biochemical Pathway: a series of biochemical reactions
 - Usable energy produced by one reaction may be stored and used in a later reaction.
 - In most cases, this energy is stored in a molecule called adenosine triphosphate (ATP).
- Structure- the ATP molecule has three parts:
 1. adenine (a nitrogen-containing molecule)
 2. ribose (a five-carbon sugar)
 3. three phosphate groups
 - The adenine bonds to ribose, forming adenosine.
 - adenosine monophosphate (AMP) = adenosine and one phosphate group
 - adenosine diphosphate (ADP) = adenosine and two phosphate groups
- Function- ATP stores energy in the bonds between the phosphate groups (high-energy bonds)

ATP-ADP Cycle

- The phosphate bonds of ATP must be broken before cells can use the energy stored in them.
 - An enzyme called ATPase breaks the bond between the 2nd and 3rd phosphate groups when energy is needed.
 ➢ ATP \rightarrow ADP + P + energy
 - When more energy is needed, a similar reaction can occur breaking the bond between the 1st and 2nd phosphate groups.
 ➢ ADP \rightarrow AMP + P + energy
 - The breakdown of ATP to ADP/AMP may result in:
 1. free phosphate ions + energy. OR
 2. the transfer of a phosphate group to another molecule (phosphorylation). The phosphorylated molecule gains both the phosphate group and the energy.
- The formation of ATP is the reverse of its breakdown. ADP is phosphorylated to form ATP.
 - An enzyme called ATP synthase catalyzes the synthesis of ATP.
 ➢ ADP + P + energy \rightarrow ATP
- Photosynthesis, respiration, and the ATP-ADP cycle form a fundamental biological cycle:
 - plants store energy in glucose molecules during photosynthesis \rightarrow animals and plants release that energy during respiration \rightarrow the energy is stored in ATP \rightarrow until it is needed to fuel cell activities